VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

DEPARTMENT OF CHEMISTRY SEMESTER-II

APPLIED CHEMISTRY (All branches)

Instruction:(2+1)periods per week	Semester End Exam Marks : 60 Subject Reference Code : BS230CF		Cubjectitions	
Credits : 2	Continuous Internal Exam Marks : 40		Duration of semester End Exam: 3 Hours	
OBJECTIVES The course will enable the students to:		OUTCOMES At the end of the course students should be able to:		
Discuss different types of polymers and their applications.		processing techniques, preparation, properties and applications of fer plastics and elastomers. 3. Apply the chemical principles of combustion to calculate the quantity		
Emphasize upon the quantity and quality of fossil fuels and need for bio- diesel.			stion of a given fuel. nd ultimate analysis of coal. s and applications of selected solid, liquid and	
 To appraise rocket propellants and high energy materials. 		gaseous fuels. 6. Explain the principle	e of rocket propulsion, classification and	
Get acquainted with the princip analysis.	les of chemical	materials namely lead az 8. Discuss the principle	ropellants. If preparation and applications of high energy ide, TNT, Nitro glycerine and RDX le, working and applications of selected chemical analysis of materials.	

UNIT-I: Batteries

Introduction, basic concepts of battery (power density and energy density), primary and secondary cells. Primary batteries: construction and electrochemistry of Zn-Carbon battery, Zn-alkaline battery- HgO-Zn battery and Ag₂O-Zn battery.

Secondary batteries: construction and electrochemistry of lead-acid battery- advantages and limitations.

UNIT-II: Polymers

Introduction, Degree of polymerization, Functionality of monomers & its effect on the structure of polymers, Classification of polymers-a) Homo and Co-polymers, b) Homo chain and Hetero chain polymers. c) Plastics, Elastomers, Fibers & Resins d) Thermoplastics & Thermosets. Molecular weight: Number average and Weight average methods, numerical. Glass transition temperature (Tg), factors affecting Tg.

Types of Polymerization: Addition and Condensation polymerization.

Plastics: Preparation, properties and applications of Aramid (Kevlar), Polymethylmethacrylate (PMMA),

Polycarbonate and Phenol-formaldehyde (Bakelite).

Elastomers: Natural rubber- Structure - Vulcanization and advantages.

Artificial Rubbers: Preparation, properties and applications of Buna-S, Butyl and Silicone rubbers.

Redde Not Bliman

UNIT-III: Fuels

Introduction, classification, requisites of a good fuel. Calorific value (CV)-HCV, LCV (Definition and relationship), Calculation of CV using Dulong's formula, Numericals. Chemistry of combustion-Numericals on volume- weight and weight-weight methods.

Solid Fuels: Coal: Proximate & Ultimate analysis of coal and their significance -Numericals.

Liquid Fuels: Fractions of crude oil, Composition and CV of Gasoline, Cracking: Fixed bed catalytic cracking method, Knocking and its significance, Octane number, Enhancement of quality of gasoline by reforming and anti- knock agents. Leaded & unleaded petrol, Power alcohol. Catalytic converters and their role in reducing the toxicity of automobile exhaust emissions. Composition and CV of diesel oil, Cetane number.

Gaseous Fuels: Composition and applications of CNG, LPG.

Bio-diesel: Source, chemistry of transesterification, merits of bio diesel.

UNIT-IV: Rocket Propellants & High energy materials

Rocket Propellants- Principle of rocket propulsion, classification, characteristics of good propellants.

High energy materials- Introduction, classification, precautions during storage, characteristics of explosives (oxygen balance-numericals) preparation of lead azide, TNT, Nitro glycerine and RDX

UNIT-V: Instrumentation techniques in chemical analysis

- a) Visible Spectroscopy: Beer- Lamberts law- estimation of copper (II) in the given sample.
- b) Atomic Absorption Spectroscopy: Principle-working and applications.
- c) Flame Photometer: Principle-working and applications
- d) Thermal Analysis Techniques: Introduction, Thermogravimetry (TGA) and Differential Scanning Calorimetry (DSC): principle and applications.

Books:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry", Dhanpat Rai Pub, Co., New Delhi (2002)
- 2. Applied Chemistry "A text for Engineering & Technology" Springer (2005).
- 3. S. Dara "A text book of engineering chemistry" S.Chand&Co.Ltd., New Delhi (2006).
- 4. Gowarikar V. R., Viswanathan N. V. and JayadevSreedhar, "Polymer Science", New Age International (P) Ltd., New Delhi, 2011.
- 5. Palanna O. G., "Engineering Chemistry", Tata Mc.Graw Hill Education Pvt. Ltd., New Delhi, 2009.
- 6. Shasi Chawla, "Text Book of Engineering Chemistry", Dhanpat Rai Publishing Company, NewDelhi (2008).

Suggested Reading:

- 1. A textbook of Polymer Science: Fred, Billmeyer Jr., Wiley India Third edition.
- 2. Samir S., "Fuels and Combustion", India Universities Press, Hyderabad, 2009.
- 3. Dell R. M. and Rand D. A. J., "Understanding Batteries", Royal Society of Chemistry, UK, 2001.
- 4. Billmeyar F. W., "Text book of Polymer Science", Wiley-Inter Science, New York, 2002.
- 5. Joel R. Fried, "Polymer Science and Technology", Prentice Hall of India Pvt. Ltd., India, 2003.
- 6. Arora M. G., Singh M and Yadav M.S, "Polymer Chemistry", Anmol Publications, New Delhi, 2003.
- 7. Bahadur P. and Sastry N.V., "Principles of Polymer Science", Narosa Publishing House, New Delhi, 2002.

the D. S. Down

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

DEPARTMENT OF CHEMISTRY

SEMESTER-I & II **ENGINEERING CHEMISTRY LAB**

(Collinion to all branches of B. E.i. ye		
Semester End Exam Marks : 50	Subject Reference Code	: BS121CH
Continuous Internal Exam Marks : 30	Duration of semester End Exam	: 3 Hours
	Semester End Exam Marks : 50	Semester End Exam Marks : 50 Subject Reference Code

OBJECTIVES	OUTCOMES		
The course will enable the students to:	At the end of the course students should be able to:		
Describe the quantitative analytical techniques	 Analyze the given substance using conventional and instrumental methods of chemical analysis 		
2. Learn the skills to handle the instruments	Estimate the amount of a given substance in the given sample by Conductometry, Potentiometry		
3. Apply the theoretical principles in experiments	P ^H Metry and Colorimetry 3. Evaluate the data recorded from the practical		
4. Demonstrate the preparation of polymers	observations 4. Prepare a polymer		
5. Examine the accuracy	Calculate the percentage of error of the results obtained		

Any 10 experiments to be performed

- 1. Introduction to Volumetric / Instrumentation analysis and safety precautions. Standardization of KMnO₄ / NaOH
- 2. Estimation of Ferrous iron in given sample by KMnO₄
- 3. Estimation of hardness of Water by Complexometric method
- 4. Estimation of Calcium in Milk by Complexometric method
- 5. Estimation of Carbonate and bicarbonate alkalinity of Water
- 6. Estimation of Copper in brass / in the given solution by hypo
- 7. Measurement of Conductivity and determination of concentration of given electrolyte by Conductometry.
- 8. Measurement of Conductivity and determination of concentration of electrolytes in given mixture by Conductometry.
- 9. Construction of a galvanic cell / battery and study of variation of EMF / Cell Voltage with change in concentration of electrolyte by Potentiometry
- 10. Construction of galvanic cell with the given electrodes and estimation of Ferrous iron in the test sample by Potentiometry.
- 11. Estimation of acid in the test sample using PH Metry
- 12. Estimation of copper in the test sample using Colorimetry.

Demo

- 1. Preparation of a polymer
- 2. Preparation of Nano material

Learning Resource:

- 1. B. Vishwanathan, P.S Raghavan Practical Physical Chemistry, Viva Books Private Limited.
- 2. J. Mendham and Thomas, "Vogel's Text book of quantitative chemical analysis", Person education Pvt. Ltd, 6th Edition (2002).

ne neede pot Elmon