VASAVI COLLEGE OF ENGINEERING (new cacs)

(AUTONOMOUS)

9-5-81, Ibrahimbagh, Hyderabad, Telangana -500031 DEPARTMENT OF CHEMISTRY

> SYLLABUS FOR THE SEMESTER-I ENGINEERING CHEMISTRY

(Common to all branches of B. E.I year)

Instruction : 2+1 hours per week	Semester	End Exam Mar	ks : 50	Subject Reference Code	: BS
Credits : 2	Sessional	Marks	: 25	Duration of semester End Exam	: 3 Hours

OBJECTIVES	OUTCOMES At the end of the course students should be able to:		
The course will enable the students to:			
 Describe the requirements of water for domestic and industrial uses. Discuss different types of polymers and their applications Emphasize upon the quantity and quality of fossil fuels and need for bio- diesel Enrich with the concepts of corrosion and factors Get acquainted with various corrosion control methods. 	 Select suitable method of water treatment for specific purpose Choose the appropriate polymer as per requirement Suggest the better fuels for required output 		

UNIT-I: Water Chemistry

Hardness of water- types and its units (PPM, Degree Clarke & Degree French). Degree of hardness-numericals. Determination of hardness of water by EDTA method -numericals. Alkalinity of water and its determination-Numericals. Effects of hardness in boilers- scales, sludge, causes and their prevention by Calgon & blow down processes Softening of water by Reverse Osmosis. Specifications of potable water. Water treatment for drinking purpose- Coagulation, Sedimentation, Filtration, Sterilization by a) Chlorination- Break Point Chlorination. b) Ozonolysis.

UNIT-II: Polymers

Definition, Degree of polymerization, Functionality of monomers & its effect on the structure of polymers. Classification of polymers-a) Homo and Co-polymers, b) Homo chain and Hetero chain polymers. c) Plastics, Elastomers, Fibers & Resins d) Thermoplastics & Thermosets.

Types of Polymerisation - Addition and Condensation polymerization.

Plastics:

131

Preparation, properties and uses of A) Aramid, B) Bakelite C) Polymethylmethaacrylate (PMMA) and D) Polycarbonate

Elastomers:

Natural rubber- Structure - Vulcanization and merits. Artificial Rubbers: Preparation, properties and uses of Buna-S, Butyl and Silicone rubbers.

Biodegradable polymers: Introduction and advantages. Polylactic acid- Preparation and applications.

UNIT-III: Chemical Fueis

Introduction, classification, requisites of a good fuel. Advantages and disadvantages of solid, liquid & gaseous fuels. Calorific value (CV)-HCV, LCV (Definition and relationship), Dulongs formula-Numericals.

NR ad

Solid Fuels: Proximate & Ultimate analysis of coal and their significance. Chemistry of combustion-Numericals by volume- weight and weight-weight method.

Liquid Fuels: Composition and CV of Gasoline, Fixed bed catalytic cracking method, Knocking and its significance-, Octane number, Enhancement of quality of gasoline by reforming and anti knock agents. Leaded & unleaded petrol. Catalytic converters and their role in reducing the toxicity of exhaust emissions, Power alcohol, Diesel-composition, CV. Cetane number.

Gaseous Fuels: Composition and applications of CNG, LPG.

Bio-diesel: Source and chemistry of Transesterification.

UNIT-IV: Corrosion Science

Concept, Definition, Gravity of corrosion-Types of corrosion (Dry & Wet), Pilling – Bed worth rule, effect of nature of oxide layer on rate of dry corrosion. Mechanism of electro chemical (wet) corrosion. Formation of anodic and cathodic areas-Differential aeration corrosion (Pitting, Water line & Crevice corrosion) and Galvanic corrosion - Galvanic series.

Factors influencing corrosion

a. Nature of metal: 1.Relative position of metal in galvanic series. 2. Over Voltage 3.Relative areas of anode & cathode 4.Nature of corrosion product.

b. Nature of environment: 1. Temperature 2. PH 3. Humidity.

UNIT-V: Corrosion Control methods

A) Corrosion Inhibitors- Anodic and cathodic inhibitors.

B) Protective coatings i) Organic coatings- Paint-its constituents and their functions.

ii) Metallic Coatings (Anodic & Cathodic), Methods of application of metallic coatings-Hot dipping (Galvanization process), Principle of Electro plating & Electroless plating and their differences. Electroplating (Cu coating on Fe), Electroless plating (Ni coating on Insulators)

C) Cathodic protection, Sacrificial Anodic Protection (SAP), Impressed Current Cathodic Protection (ICCP).

Learning resources:

1. PC Jain, M Jain Engineering Chemistry, Dhanapathi Rai &sons (16th edition), New Delhi.

2. Sashi Chawla, Text book of Engineering Chemistry, Dhanapathi Rai &sons, New Delhi.

3. O.G. PALANNA, Engineering Chemistry, TMH Edition.

4. JC Kuriacose and J Rajaram, Chemistry in Engineering and Technology TMH, New Delhi.

5. SS Dara, S Chand &sons, Engineering Chemistry, New Delhi.

6. Puri, Sharma and Pathania Principles of physical chemistry, Vishal Publishing Co.

7. PL Soni and op Dharmarha, S Chand &sons, Text book of PhysicalChemistry, New Delhi.

8. S. Glasstone and D Lewis, Elements of Physical Chemistry.

9. Fred W. Billmeyer Jr., Textbook of Polymer Science.

10. Shikha Agarwal, Engineering Chemistry, Cambridge University Press, 2015.

11. Wikipedia

In NB ady

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) 9-5-81, Ibrahimbagh, Hyderabad, Telangana -500031 DEPARTMENT OF CHEMISTRY

SYLLABUS FOR THE SEMESTER-I CHEMISTRY LABORATORY -I

(Common to all branches of B. E.I year)

Instruction : 2 hours per week	Semester End Exam Marks	: 30	Subject Reference Code	·BS
Credits : 1	Sessional Marks	:20	Duration of semester End Exam	: 2 Hours

OBJECTIVES	OUTCOMES At the end of the course students should be able to:			
The course will enable the students to:				
 Describe the quantitative analytical techniques Learn the skills to handle the instruments Apply the theoretical principles in experiments Demonstrate the preparation of polymers Examine the accuracy 	 Analyze the given substance using conventional and instrumental volumetric techniques Estimate the substances by Conductometry and colorimetry Evaluate the data from the practical observations Prepare urea- formaldehyde and nylon 6,6 polymers Calculate the percentage of error of the results obtained 			

1. Introduction to Volumetric / Instrumentation analysis and safety precautions. 2. Standardization of KMnO4 / NaOH

Permanganometry

3. Estimation of Ferrous iron by KMnO₄

Complexometry

4. Estimation of hardness of Water

5. Estimation of Calcium in Milk

Acidimetry

212 2

6.Estimation of Carbonate and bicarbonate alkalinity of Water

Conductometry

7. Measurement of Conductance and determination of concentration of given electrolyte

8. Measurement of Conductance and determination of concentration of electrolytes in the given mixture.

Colorimetry

9. Verification of Beer- Lamberts law.

10. Determination of concentration of Cu

11. Estimation of Fluoride in a water sample

Demo

11. Preparation of Phenol Formaldehyde resin /Urea formaldehyde / Nylon 6,6

12. Identification of Anode and Cathode in Corrosion of iron/steel.

Learning Resource:

B.Vishwanathan, P.S Raghavan Practical Physical Chemistry, Viva Books Private Limited.
 J. Mendham and Thomas, "Vogel's Text book of quantitative chemical analysis", Person education Pvt. Ltd, 6th Edition (2002).

NR eddy